% arg_ia_pairs.pl % % This is a synthetic database of % training data. It defines pairs, % for fictitious companies, for % the independent variable, Annual % Revenue Growth (ARG) and a dependent % variable Investor Attractiveness (IA). % % Exports: % arg_ia_pairs( ArgIaPairs- ) /* arg_ia_pairs( ArgIaPairs- ): Returns a list of pairs Arg-Ia . */ arg_ia_pairs( ArgIaPairs ) :- findall( Arg-Ia , arg_ia( Arg, Ia ) , ArgIaPairs ). test_arg_ias :- arg_ias( Pairs ), format( "ARG/IA pairs=~w~n", [Pairs] ). /* arg_ia( Arg, Ia ): A company has Annual Revenue Growth Arg and Investor Attractiveness Ia. */ % Very low ARG corresponds to very unattractive IA. arg_ia(-9, 0.2). arg_ia(-7, 0.7). arg_ia(-5, 1.0). arg_ia(-3, 1.3). arg_ia(-4, 1.1). arg_ia(-6, 0.8). arg_ia(-8, 0.4). arg_ia(-1, 1.7). % Low ARG corresponds to unattractive IA. arg_ia(5, 3.0). arg_ia(15, 3.5). arg_ia(10, 4.0). arg_ia(12, 3.8). arg_ia(7, 3.2). arg_ia(18, 4.1). arg_ia(3, 2.7). arg_ia(11, 3.9). % Moderate ARG corresponds to neutral IA. arg_ia(30, 5.0). arg_ia(60, 5.5). arg_ia(40, 5.0). arg_ia(50, 5.3). arg_ia(35, 5.1). arg_ia(45, 5.2). arg_ia(55, 5.4). arg_ia(25, 4.8). % High ARG corresponds to attractive IA. arg_ia(85, 7.0). arg_ia(90, 8.0). arg_ia(80, 7.5). arg_ia(82, 7.3). arg_ia(87, 7.8). arg_ia(92, 8.1). arg_ia(75, 7.1). arg_ia(78, 7.4). % Very high ARG corresponds to very attractive IA. arg_ia(105, 9.0). arg_ia(110, 9.5). arg_ia(100, 9.0). arg_ia(102, 9.2). arg_ia(108, 9.7). arg_ia(115, 9.8). arg_ia(103, 9.3). arg_ia(109, 9.6). % Additional samples for more granularity. arg_ia(20, 4.5). arg_ia(70, 6.5). arg_ia(65, 6.0). arg_ia(23, 4.6). arg_ia(73, 6.8). arg_ia(96, 8.5). arg_ia(98, 8.7). arg_ia(27, 4.9). arg_ia(33, 5.1). arg_ia(57, 5.7). arg_ia(59, 5.8). arg_ia(61, 6.1). arg_ia(64, 6.3). arg_ia(68, 6.7). arg_ia(76, 7.2). arg_ia(79, 7.6). arg_ia(83, 7.9). arg_ia(88, 8.2). arg_ia(94, 8.6). arg_ia(97, 8.9). arg_ia(101, 9.1). arg_ia(104, 9.4).