
J. Functional Programming 1 (1): 1{000, January 1993 c 1993 Cambridge University Press 1
Animated Fuzzy LogicGary Meehan and Mike JoyDepartment of Computer ScienceUniversity of WarwickCoventryUK, CV4 7ALE-mail: fGary.Meehan, M.S.Joyg@dcs.warwick.ac.ukAbstractIn this paper we aim to give an introduction to fuzzy logic using the language Haskell toimplement our solutions. We shall see how the high-level, declarative nature of a functionallanguage allows us to implement easily and e�ciently solutions to problems using fuzzylogic and, in particular, how the presence of functions as �rst-class values allows us tomodel the key concept of the fuzzy subset in a natural way.1 IntroductionFuzzy logic, developed by Lot� Zadeh (Zadeh, 1965; Zadeh, 1973), is a form of multi-valued logic which has its grounds in Lukasiewicz's work on such logics (Lukasiewicz,1967a; Lukasiewicz, 1967b). It �nds many applications in expert systems (in partic-ular control problems) (Cox, 1994; Mamdani & Assilian, 1975; Ross, 1995; Wang,1994), neural nets (Eklund & Kwalonn, 1992), formal reasoning (Negoita, 1985;Tanaka, 1997), decision making (Cox, 1994; Negoita, 1985; Zimmermann, 1991),database enquiries (Negoita, 1985) and many other areas. The use of fuzzy logicin such applications not only makes their solutions simpler and more readable butcan also make them more e�cient, stable and accurate (see, for example, Chapter2 of (Wang, 1994), or Chapter 3 of (Yan et al., 1994)).Fuzzy logic has been applied to many languages | both in extending standardlanguages such as Prolog (Martin et al., 1987), Fortran (Horvath, 1988), APL (Ne-goita, 1985) and Java (Aptronix Ltd., 1996), and in custom-designed languages suchas Fuzzy CLIPS (for Information Technology, 1996), FIL (Aptronix Ltd., 1992a;Aptronix Ltd., 1992b), and FLINT (Ltd., 1997). However, no one, to the authors'knowledge, has combined fuzziness with a functional language.In this paper we aim to give an introduction to fuzzy logic using the languageHaskell (Peterson & Hammond, 1997) to implement our solutions. We shall see howthe high-level, declarative nature of a functional language allows us to implementeasily and e�ciently solutions to problems using fuzzy logic and, in particular, howthe presence of functions as �rst-class values allows us to model the key concept ofa fuzzy subset (see Section 3) in a natural way.This paper is arranged as follows. Section 2 introduces the logic part of fuzzy logic

2 Gary Meehan and Mike Joy(the term `fuzzy logic' is used to describe both the actual logic and the whole conceptof fuzzy theory). Section 3 introduces fuzzy subsets and some of their applications.Section 4 introduces fuzzy systems and gives several examples. Section 5 concludes.Throughout the paper we shall give examples of using the programs we developusing the Haskell interpreter Hugs (Thompson, 1996). The programs in questioncan be downloaded o� the WWW from:http://www.dcs.warwick.ac.uk/people/research/Gary.Meehan/funcprog/research.htmlHugs is available from:http://haskell.systemsz.cs.yale.edu/hugs/2 Fuzzy LogicIn fuzzy logic, the two-valued truth set of boolean logic is replaced by a multi-valuedone, usually the unit interval [0; 1]. Truth sets taking values in this range are saidto be normalised. In this set, 0 represents absolute falsehood and 1 absolute truth,with the values in between representing increasing degrees of truthness from 0 to1. So we can say that 0.9 is `nearly true', 0.5 is `as true as it is false' and 0.05 is`very nearly false'. The nearer a value is to 0 or 1 the crisper it is; the nearer it isto 0.5 (the middle value of the range) the fuzzier it is.The standard connectives of boolean logic | ^, _ and : | are adapted so thatthey work with the fuzzy truth set. There are many ways in which this can bedone, but whatever de�nition we choose we expect the following to hold (Fodor &Roubens, 1994; Zimmermann, 1991):1. ^ and _ should be associative and commutative.2. ^ and _ should be monotonic. That is, if a; b; c 2 [0; 1] and a � b thena ^ c � b ^ c and similarly for _.3. 1 and 0 are the identities of ^ and _ respectively. From this and monotonicitywe deduce that 1 and 0 are annihilators of _ and ^ respectively.4. : should be anti-monotonic. That is if a; b 2 [0; 1] and a � b then :b � :a.Normally this should be strict monotonicity, that is if a < b then :b < :a.5. : should be its own inverse, that is if a 2 [0; 1] then ::a = a.6. If we restrict the truth set to just 0 and 1, then our logic should behave exactlyas boolean logic.De�nitions of _ and ^ that satisfy the above are also known as t-norms and t-conorms (or s-norms) respectively.We would also expect the connectives to be continuous and to satisfy DeMorgan'slaws. Two de�nitions which do so, taking values in the set [0; 1], and which areprobably the most common are Zadeh's original de�nition (Zadeh, 1965; Zadeh,1973) using minimum and maximum operators:x ^ y = min(x; y)x _ y = max(x; y):x = 1� x

Animated Fuzzy Logic 3and an alternative using sum and product de�nitions:x ^ y = xyx _ y = x + y � xy:x = 1� xNote that p ^ :p = 0 () p 2 f0; 1g in both these and most other de�nitionsof fuzzy logic. For instance, 0:3 ^ :0:3 = 0:3 ^ 0:7 = 0:3 using Zadeh's de�nition,and 0:21 if we use the product de�nition of ^. Of course, this is only an elementaryintroduction to fuzzy logic, and we have not mention more esoteric connectives suchas averaging operators. For more information we refer the reader to (Kaufmann,1975), (Zimmermann, 1991) and (Fodor & Roubens, 1994). From now on we shallpresume that all fuzzy truth values lie in [0; 1].We shall now set about implementing these ideas in Haskell. We shall place all ourde�nitions in a module called Fuzzywhich will rede�ne some of the functions de�nedin the Haskell prelude. This is done by shadowing the previous de�nitions (seeSection 5.3.2 of the Haskell report (Peterson & Hammond, 1997)). Thus the Fuzzymodule and any module which wishes to import it should contain the declaration:import Prelude hiding ((&&), (||), not, and, or, any, all)This forces an explicit import of the prelude (which is normally implicitly imported),but hides the functions which we want to rede�ne. An example of the importingprocedure can be seen Section 3.5.Fuzzy truth values are represented using the Haskell type Double. The connec-tives are implemented by overloading the operators &&, ||, etc. so that they workon fuzzy values as well as boolean ones. This is done by shadowing the connectives(see above) and placing the connectives in a class (Hall et al., 1996; Jones, 1995;Peyton Jones et al., 1997):class Logic a wheretrue, false :: a(&&), (||) :: a -> a -> anot :: a -> aThe functions and, or, etc. are then also overloaded so that they now operate oninstances of the Logic class, rather than just the Bool type as before:and, or :: Logic a => [a] -> aand = foldr (&&) trueor = foldr (||) falseany, all :: Logic b => (a -> b) -> [a] -> bany p = or . map pall p = and . map pWe can then declare instances of this class | Bool is declared in the obvious way(with true = True, etc.); for fuzzy truth values (values of type Double) we have:

4 Gary Meehan and Mike Joy
T

ru
th

 v
al

u
e

profitable

Profit (% of costs)

-10 0 10 20 30

F

T

Fig. 1. Crisp de�nition of Pro�t.
T

ru
th

 v
al

u
e

Profit (% of costs)

profitable

0.67

-10 0 10 20 30

0

1

Fig. 2. Fuzzy de�nition of Pro�t.instance Logic Double wheretrue = 1false = 0(&&) = min(||) = maxnot x = 1 - xNote that as with the Bool case, true is the identity of && and false is theidentity of || (provided we stick with values in [0; 1], of course). So, for example,0:5 ^ (0:3 _ :0:8) can be evaluated in Hugs as:Fuzzy> 0.5 && (0.3 || not 0.8) :: Double0.3where `Fuzzy>' is the Hugs prompt. The explicit typing is necessary to resolve theoverloading. 3 Fuzzy SubsetsGiven a set A and a subset of it, B say, we can de�ne a characteristic (membership)function �B : A! f0; 1g de�ned such that:�B(x) = 1; if x 2 B= 0; otherwiseThis characteristic function determines which elements of A are in B and which arenot. Now suppose we replace the two-valued range of �B with the unit interval, justas we replaced the boolean truth set with this interval. Then membership of thesubset B of A is no longer an absolute but rather something which takes varyingdegrees of truthness. For x 2 A, the closer �B(x) is to 1, the more we can regard xas belonging to B, with �B(x) = 1 holding if x de�nitely is in B. Conversely, thecloser �B(x) is to 0, the more we can regard x as not belonging to B. The subsetB is no longer a crisp set but a fuzzy one.A fuzzy subset B of a set A is a set of pairs with each element of A associated with

Animated Fuzzy Logic 5
0

1

ba

tri a b

0

1

a b c d

trap a b c d

0

1

a

singleton a

0

1

a b c

atri a b c

0

1

ba

0

1

ba

down a b

up a b

Fig. 3. Standard fuzzy subset distributionsthe degree to which it belongs to B (determined by �B). Formally, B � A � [0; 1]where B = fhx; �B(x)i j x 2 AgGiven the set-theoretic de�nition of a function, that is a set of domain-rangepairs, we note that the de�nition of B and its characteristic function are identical.This is the key fact that motivates our use of Haskell as an implementation language| by representing a fuzzy subset by its membership function, a functional languageallows us to manipulate such sets/functions with ease. We shall thus use the notionof a fuzzy subset and that of a (fuzzy) characteristic function interchangeably. Inparticular, if we have a fuzzy subset F of a set X then we shall denote X as thedomain of F .To give a concrete example, consider the problem of determining whether a com-pany is pro�table based, say, on the pro�t expressed as a percentage of total costs.Using normal set theory, given a set of percentages, P , we would have to determinean arbitrary cut-o� point at and above which we would consider pro�table, 15%say (see Figure 1). So we can de�ne pro�table � P as:pro�table = fp j p 2 P ^ p � 15gThis means however that a pro�t of 14.9% is not considered pro�table, which issomewhat counter-intuitive considering its proximity to the cut-o� point.Contrast this with a fuzzy de�nition of pro�table (see Figure 2). As before, pro�tsabove 15% are considered de�nitely pro�table and those below 0% de�nitely notpro�table; however between these two �gures the degree of pro�tability increaseslinearly. For example, a pro�t of 10% can be regarded as pro�table to a degree of0.67 (i.e., �pro�table = 0:67) and a pro�t of 14.9% is pro�table to a degree of 0.993.As functions and fuzzy subsets are identical, we represent fuzzy subsets in Haskellas a function from some domain to the fuzzy truth value set. We de�ne the followingtype synonym:type Fuzzy a = a -> DoubleA number of functions representing the shapes of common fuzzy subsets are pro-vided (see Figure 3). For instance, up has the following de�nition:

6 Gary Meehan and Mike Joyup :: Double -> Double -> Fuzzy Doubleup a b x| x < a = 0.0| x < b = (x - a) / (b - a)| otherwise = 1.0The other subsets in Figure 3 can be de�ned similarly. We can now de�ne the fuzzysubset pro�table as follows:type Percentage = Doubleprofitable :: Fuzzy Percentageprofitable = up 0 15Membership testing is then merely function application. For example:Profit> profitable 100.6666673.1 The Domain, Support and Fuzziness of a Fuzzy SubsetKnowing the domain of a fuzzy subset is necessary when defuzzifying it (see Sec-tion 3.4) and for evaluating its fuzziness (see below). We can also de�ne fuzzynumbers in terms of their fuzziness (see Section 3.3) for which again we need toknow the domain over which we are approximating.Both discrete and continuous domains are represented using ordered lists (in thelatter case we only have an approximation). We introduce the type synonym:type Domain a = [a]The `dot-dot' method of de�ning lists can be used to de�ne domains in a compactand easily-understandable way. So, for example, we can represent the domain ofpro�table, which is the range [�10; 30] as the list [-10..30].The support, which we shall denote as �(B) (also written as supp(B)) of a fuzzysubset B is the set of those members of its domain, A say, which are in the fuzzysubset with non-zero truth value, i. e.�(B) = f�B(x) 6= 0 j x 2 AgFor example, if we take the domain of pro�table as [�10; 30] then its support is(0; 30] = fx j 0 < x � 30g. This has a simple translation into Haskell:supp :: Domain a -> Fuzzy a -> [a]supp dom f = filter (\x -> f x > 0) domFor example, we can evaluate the support of profitable (de�ned above) viz :Profit> supp [-10..30] profitable[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0,24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0]

Animated Fuzzy Logic 7The fuzziness � of a fuzzy subset is the degree to which the values of its membershipfunction cluster around 0.5. The function � which measures the distance of a truthvalue to the nearest extreme, 0 or 1:�(x) = x; if x < 0:5= 1� x; otherwiseFor example �(0:3) = 0:3, �(0:8) = 0:2 and �(0) = �(1) = 0. If the domain of ourfuzzy subset B is a continuous range, [a; b] say, then we can de�ne � as:�(B) = 2b� a Z ba �(�B(x)) dxIf the domain is a discrete set of points, x1; : : : ; xn say, then the integral becomesa summation: �(B) = 2n nXi=1 �(�B(xi))For example, the fuzziness of pro�table (again over [�10; 30]) is 0.1875. Note thatfor any crisp set, A, in which the membership function returns only the values 0 or1, �(A) = 0 as 8x 2 A : �(�A(x)) = 0. Translating the above into Haskell yieldsthe following function:fuzziness :: Domain a -> Fuzzy a -> Doublefuzziness dom f = (2.0 / size_dom) * sum (map (delta.f) dom)wheresize_dom = fromInt (length dom)delta x| x < 0.5 = x| otherwise = 1.0 - xFor example, we can calculate the fuzziness of profitable, viz :Profit> fuzziness [-10..30] profitable0.182114The value that Haskell returns is only an approximation, of course. A better ap-proximation can be obtained by using a domain with more elements, e. g.:Profit> fuzziness [-10,-9.75..30] profitable0.186335 3.2 Fuzzy Subset OperationsStandard set operations | such as union, intersection and complement | can beused with fuzzy subsets. For fuzzy subsets, A;B of a set X , we have:A [B = fhx; �A(x) _ �B(x)i j x 2 XgA \ B = fhx; �A(x) ^ �B(x)i j x 2 XgAc = fhx;:�A(x)i j x 2 Xg

8 Gary Meehan and Mike Joy
A

B

A + B

Ac

0

1

U

U

A B

A B

1

B c

0 0 0

1 1

Fig. 4. Operations on fuzzy subsets.This can be seen graphically in Figure 4, where the logical connectives are de�nedusing Zadeh's method. A slightly unorthodox operation is addition de�ned as:A + B = fhx; �A(x) + �B(x)i j x 2 XgThis leads to fuzzy subsets whose membership function returns values outside therange [0; 1]. This operation is generally only used in fuzzy systems (see below) wherethe resultant set is only used as an intermediate value and will be defuzzi�ed (seeSection 3.4) to yield a typical value.If fuzzy subsets are Haskell functions, then the fuzzy subset operators are higher-order functions. If we look at the de�nition of intersection, for example, we see thatwe can regard it as a way of de�ning logical conjunction over sets. This conceptholds for both fuzzy and crisp sets. Taking this to its logical conclusion we have:instance (Logic b) => Logic (a -> b) wheretrue = \x -> true -- everythingfalse = \x -> false -- emptyf && g = \x -> f x && g x -- intersectionf || g = \x -> f x || g x -- unionnot f = \x -> not (f x) -- complementThis instance represents a generalized set, where true represents the set that ev-erything is a member of and false is the empty set. If true is an identity for the&& over the type b then true it also an identity for && over the type a -> b, andsimilarly for false and ||.In the context of fuzzy subsets, that is the type Fuzzy a (which in turn is the typea -> Double), true is the fuzzy subset, T say, with membership function �T (x) = 1and false is the fuzzy subset, F say, with membership function �F (x) = 0. Thefunction true remains the identity of && and false the identity of ||. We alsoneed to be able to perform addition on fuzzy subsets. This is done by making thetype a -> b, which remember is a generalisation of the type Fuzzy a a member ofthe Num class (which is used to overload the numeric operators +, -, etc.):instance (Num a, Num b) => Num (a, b) whereinstance (Num b) => Num (a -> b) wheref + g = \x -> f x + g xf * g = \x -> f x * g xabs f = \x -> abs (f x)signum f = \x -> signum (f x)

Animated Fuzzy Logic 9negate f = \x -> negate (f x)fromInteger i = \x -> fromInteger iWe will also �nd it useful to use the operators of the Logic class over tuples, forinstance in the shower controller described in Section 4.1.1 which groups its outputvariables in tuples. This is done pointwise, e. g., for pairs we have:instance (Logic a, Logic b) => Logic (a, b) wheretrue = (true, true)false = (false, false)(a, b) && (a', b') = (a && a', b && b')(a, b) || (a', b') = (a || a', b || b')not (a, b) = (not a, not b)We also declare tuples to be instances of the Num class in a similar manner.3.3 Hedges and Fuzzy NumbersJust as adjectives such as pro�table can be quali�ed by terms such as very andsomewhat, so can fuzzy subsets. Terms such as these, known as hedges alter themembership function by intensifying it (normally by raising it to a power greaterthan 1) in the case of very and similar terms such as extremely, or diluting it(normally by raising it to a power between 0 and 1) in the case of somewhat.Usually we have: �very F (x) = �F (x)2�somewhat F (x) = �F (x)1=2The e�ect of very and somewhat on pro�table can be seen in Figure 5. We see thata pro�t of 10% is pro�table with truth value 0.67, very pro�table by truth value0.44, and somewhat pro�table by degree 0.82.In Haskell, we represent hedges as higher-order functions. We �rst de�ne a generichedge which will raise the value of a function to a speci�ed power:
1

T
ru

th
 v

al
u

e

Profit (% of costs)

0

somewhat profitable profitable

very profitable
0.67

0.44

0.82

20 30-10 0 10Fig. 5. Very pro�table and Somewhat pro�table.

10 Gary Meehan and Mike Joy
around 20

0

1

nearly 20

0.5

0.75
0.83

roughly 20

0 17.5 20 40Fig. 6. Fuzzy approximations to 20.hedge :: Double -> Fuzzy a -> Fuzzy ahedge p f x = if fx == 0 then 0 else fx ** pwhere fx = f xWe can then de�ne more speci�c hedges as follows:very, extremely, somewhat, slightly :: Fuzzy a -> Fuzzy avery = hedge 2extremely = hedge 3somewhat = hedge 0.5slightly = hedge (1 / 3)The user is free to rede�ne these functions with di�erent numbers if they want, ofcourse. An example of these in use, using the same sets and de�nitions in Figure 5:Profit> very profitable 100.444444Profit> somewhat profitable 100.816497Hedges can also be used to approximate numbers by converting them into fuzzysubsets (also known as fuzzy numbers in this context) using such terms as around20, roughly 20 and nearly 20. One typical way of de�ning these subsets is by sym-metrical triangular fuzzy subsets, centred on the number, c say, that we are ap-proximating and with base of width 2w. The membership function of this set isthus: �(x) = 1� jx�cjw if c� w � x � c + w= 0; otherwiseThe tighter the approximation we want, the less fuzzy the fuzzy subset is, and hencethe smaller the base of the triangular fuzzy subset is. In general, roughly is a looserapproximation than around which in turn is looser than nearly.For example, consider the fuzzy numbers in Figure 6, which approximate 20 overthe domain [0; 40] using triangular fuzzy subsets centred on 20. Here we see thatnearly 20 has a base of length 5 and a fuzziness of 0.125; around 20 has a baseof length 10 and a fuzziness of 0.25; and roughly 20 has a base of length 15 and a

Animated Fuzzy Logic 11
0

m
ed

m
ax

/

m
ax

m
ax

1

ce
n

tr
o

id

T
ru

th
 v

al
u

e

m
in

m
ax

0 6 8 1042Fig. 7. Defuzzifying a fuzzy subsetfuzziness of 0.375. So, for example, 17.5 is nearly 20 with truth vale 0.5, around 20with truth value 0.75 and roughly 20 with truth value 0.83.As with hedges, to implement fuzzy numbers in Haskell we de�ne a generic fuzzynumber function, which approximates a number on a speci�c domain by a triangularfuzzy subset (see Figure 3) of speci�ed fuzziness:approximate :: Double -> Double -> Domain Double -> Fuzzy Doubleapproximate fuzziness n dom = tri (n - hw) (n + hw)where hw = fuzziness * (ub dom - lb dom)We now de�ne the fuzzy number generators near, around and roughly as:near, around, roughly :: Double -> Domain Double -> Fuzzy Doublenear = approximate 0.125around = approximate 0.25roughly = approximate 0.375This leads to the same sets as in Figure 6 if we approximate 20 over the domain[0; 40]. For example:Profit> near 20 [0..40] 17.50.5Profit> roughly 20 [0..40] 17.50.833333Profit> around 20 [0..40] 17.50.75 3.4 Defuzzi�cationIn a real-world situation, we often need a concrete value rather than a fuzzy subset.The process of extracting a typical value from a fuzzy subset is known as defuzzi�-cation and there are many methods for doing this. Two such methods are �ndingthe centroid (or centre of gravity) of a fuzzy subset, or �nding the maxima of afuzzy subset and returning a member of this set.

12 Gary Meehan and Mike JoyIf we have a fuzzy subset A with membership function �A over a domain X thenthe centroid of A is de�ned as: RX x�A(x) dxRX �A(x) dxif X is a continuous domain. If X is discrete then the centroid is de�ned as:PX x�A(x)PX �A(x)The latter is the de�nition we use in our implementation. We de�ne the centroidfunction as::centroid :: Domain Double -> Fuzzy Double -> Doublecentroid dom f = (sum (zipWith (*) dom fdom)) / (sum fdom)where fdom = map f domFor example, the centroid of the trapezoid fuzzy subset in Figure 7 can be evaluatedvizProfit> centroid [0..10] (trap 2 3 6 9)5.06667The maxima of a fuzzy subset A over a domain X is de�ned as the set maxima(A)such that: 8m 2 maxima(A) : 8x 2 X : �A(m) � �A(x)This can be implemented using the following function:maxima :: Ord a => Domain a -> Fuzzy a -> [a]maxima dom f = maxima' dom []wheremaxima' [] ms = msmaxima' (x:xs) [] = maxima' xs [x]maxima' (x:xs) (m:ms)| f x > f m = maxima' xs [x]| f x == f m = maxima' xs (x:m:ms)| otherwise = maxima' xs (m:ms)We then typically defuzzify A by returning the minimum, the median or the max-imum of maxima(A):minmax, medmax, maxmax :: Ord a => Domain a -> Fuzzy a -> aminmax dom f = minimum (maxima dom f)maxmax dom f = maximum (maxima dom f)medmax dom f = median (maxima dom f)wheremedian ms = head (drop (length ms `div` 2) (qsort ms))qsort [] = []qsort (x:xs) = qsort [y | y <- xs, y <= x] ++ [x] ++qsort [y | y <- xs, y > x]

Animated Fuzzy Logic 13Defuzzifying the fuzzy subset in Figure 7 using these three methods we get:Profit> minmax [0..10] (trap 2 3 6 9)3.0Profit> medmax [0..10] (trap 2 3 6 9)5.0Profit> maxmax [0..10] (trap 2 3 6 9)6.0 3.5 An Example | Fuzzy Database QueriesThe linguistic nature of fuzzy subsets make them ideal in database enquiries. Ina functional language this is akin to applying a �lter to a list of information. Wede�ne a variant of the standard �lter function, which takes a fuzzy predicate (i. e.a function which returns a fuzzy truth value) and returns those members of the listthat satisfy the predicate to a non-zero degree, along with the degree to which theysatisfy the predicate:ffilter :: Fuzzy a -> [a] -> [(a, Double)]ffilter p xs = filter ((/=) 0 . snd) (map (\x -> (x, p x)) xs)Referring back to our pro�t example, based originally on an example in (Negoita,1985), suppose we have the following module:module Profit whereimport Prelude hiding ((&&), (||), not, and, or, any, all)import Fuzzytype Percentage = Doubletype Sales = Double -- thousands of poundstype Company = (String, Sales, Percentage)sales :: Company -> Salessales (_, s, _) = sprofit :: Company -> Percentageprofit (_, _, p) = ppercentages :: [Percentage]percentages = [-10..30]profitable :: Fuzzy Percentageprofitable = up 0 15high :: Fuzzy Saleshigh = up 600 1150

14 Gary Meehan and Mike Joycompanies :: [Company]companies = [("A", 500, 7), ("B", 600, -9), ("C", 800, 17),("D", 850, 12), ("E", 900, -11), ("F", 1000, 15),("G", 1100, 14), ("H", 1200, 1), ("I", 1300, -2),("J", 1400, -6), ("K", 1500, 12)]So, we have a list of companies, functions to extract their pro�t and sales, and fuzzysubsets profitable of Percentage (using the same de�nition as before) and highof Sales. To extract all the pro�table companies from companies, we �rst de�nethe fuzzy predicate p1:p1 co = profitable (profit co)and ffilter it over companies, viz :Profit> ffilter p1 companies[(("A",500.0,7.0), 0.466667), (("C",800.0,17.0),1.0),(("D",850.0,12.0), 0.8), (("F",1000.0,15.0),1.0),(("G",1100.0,14.0),0.933333), (("H",1200.0,1.0),0.0666667),(("K",1500.0,12.0),0.8)]So, of the original 11 companies, 7 are considered pro�table with C and F being themost pro�table. Pro�tability by itself might not be enough | we may also wanthigh sales. De�ning:p2 co = profitable (profit co) && high (sales co)we can then �nd all pro�table companies with high sales:Profit> ffilter p2 companies[(("C",800.0,17.0),0.363636), (("D",850.0,12.0),0.454545),(("F",1000.0,15.0),0.727273), (("G",1100.0,14.0),0.909091),(("H",1200.0,1.0),0.0666667), (("K",1500.0,12.0),0.8)]Six companies satisfy the predicate, with G satisfying it the most. We can use hedgesto tighten or loosen the conditions, for example, de�ningp3 co = somewhat profitable (profit co) && very high (sales co)we can �nd those companies which have very high sales and somewhat pro�table:Profit> ffilter p3 companies[(("C",800.0,17.0),0.132231), (("D",850.0,12.0),0.206612),(("F",1000.0,15.0),0.528926), (("G",1100.0,14.0),0.826446),(("H",1200.0,1.0),0.258199), (("K",1500.0,12.0),0.894427)]Here the increased emphasis on sales, and decreased emphasis on pro�tability meansthat company K now satis�es the predicate we pass to ffilter to the highest degree.

Animated Fuzzy Logic 15

0

1

if tall then big

if medium then average

if short then small

if very_tall then very_big

1.5 1.8 1.95

Height (m)

short medium tall very_tall

4
7

10
13

0 1
sm

all
average

big
very_big

S
h

o
e S

ize (B
ritish

)

1.65Fig. 8. The fuzzy rule base for the height ! shoe size expert system4 Fuzzy SystemsExpert Systems (Russel & Norvig, 1995) are used to model real-world situations inmany areas of expertise. One common way of implementing these systems is as aset of rules and an inference engine which manages these rules. Rules are composedof two parts: an antecedent, which is a logical expression; and a consequent whichis an action which is performed when the antecedent is true. When this happenswe say that the rule �res.As a simple example, consider predicting the shoe size, using British shoe sizes,of a man given his height in metres. In a standard expert system we might haverules like:if 1.65 <= height & height <= 1.72 then shoe_size := 9These rules are absolutes | if and only if the antecedent holds will the action be�red and �red completely.In a rule-based fuzzy system, the antecedent is a fuzzy logic expression the value ofwhich dictates the degree to which the action �res, the action being the assignment

16 Gary Meehan and Mike Joy
4 7 10 13

0

0.2

0.6

1

Shoe Size (British)

maximumcentroid

bigaverage

9.25Fig. 9. Weighting, adding and defuzzifying the rules for a height of 1.75mof a variable to a fuzzy subset. If we have a rule such as if p then a := F thena is assigned to the fuzzy subset F 0 where F 0 is linearly weighted by the valueof p and has membership function �F 0(x) = p�F (x). This can be extended tomultiple variable assignments. Note that if the value of the antecedent is 0, thenthe membership function of the consequent fuzzy subset will be constantly 0 (theempty set) and we regard the rule as not having been �red. In our shoe size example,our rules are:if height is short then shoe_size := smallif height is medium then shoe_size := averageif height is tall then shoe_size := tallif height is very_tall then shoe_size := very_bigHere is serves as a membership test for height. These rules can be thought of asforming patches (see Figure 8) with the larger the patch the fuzzier the rule (Kosko,1994). More input variables require more dimensions to the patches.As can be seen, these patches overlap, which in practical terms means that morethan one rule can �re, i. e., we have more than one possible assignment to shoe size.Rather than selecting one of the possible assignments to a we select them all, com-bining the subsets into one set using an operation such as union or addition. Addi-tion has the property that, unlike union, when combining many sets the membershipfunction of the result doesn't approach the constant function 1. Also all the setsthat are part of the addition contribute to the �nal result, whereas in the case ofunion large sets (measured by both their support and their height (truth values))subsume smaller ones.Once we have combined all the resultant sets, we then defuzzify them (see Sec-tion 3.4) to obtain a �nal result. For instance, if we have a height of 1.75m then thisis tall to degree 0.6 and medium to degree 0.2. If we weight the relevant consequents,sum the sets and defuzzify using the centroid method we obtain an estimated shoesize of 9 14 , while defuzzifying with any of the maxima methods yields a shoe sizeof 10, since 10 is the only element of the resultant fuzzy subset which yields thelargest truth value, in this case 0.6 (see Figure 9). Of course, this is a very simpleexample. More complex ones can be found in Section 4.1.

Animated Fuzzy Logic 17We introduce a new operator ==>, which has the leastmost binding, to the Logicclass:infix 0 ==>class Logic a where(==>) :: Double -> a -> a -- other defs as beforeThis operator linearly weights its right-hand side by the value on its left-hand side.On fuzzy values, it is simply multiplication:instance Logic Double where(==>) = (*) -- other defs as beforeThere are a number of de�nitions over Bool. One such de�nition is:instance Logic Bool wherew ==> False = Falsew ==> True = w > 0.5 -- other defs as beforeThe ==> function used over fuzzy truth values is useful in its own right as a fuzzyif-then function; an example of its use can be seen in Section 4.1.2. However itsmajor use is to represent a rule in a fuzzy rulebase, where we normally expect thevalue on the RHS of the operator to be a fuzzy subset or a tuple of such sets. Onfuzzy subsets, this operator has the de�nition:instance (Logic b) => Logic (a -> b) wherew ==> f = \x -> w ==> f x -- other defs as beforeand on tuples we weight each element of the tuple individually, e.g., for pairs wehave:instance (Logic b) => Logic (a -> b) wherew ==> (a, b) = (w ==> a, w ==> b) -- other defs as beforeThe LHS of the ==> is thus the antecedent of the rule and the RHS of the rule isthe consequent. The result of the function is the consequent linearly weighted bythe antecedent, which will usually be the result of evaluating fuzzy logic expression.To combine the weighted subsets we de�ne a function which takes a list of subsetsand a function to combine (two of) them with, and returns the result of combiningall the weighted subsets. We thus just have:rulebase :: Logic a => (a -> a -> a) -> [a] -> arulebase = foldr1Note that we can't apply rulebase to the empty list, but this would imply wehad an empty set of rules. The resultant set can then be defuzzi�ed using one thedefuzzifying functions from Section 3.4.Putting this all together, we have the following Haskell module which implementsour shoe-size expert system from above:

18 Gary Meehan and Mike Joymodule Shoe whereimport Prelude hiding ((&&), (||), not, and, or, any, all)import Fuzzytype Height = Double -- Metrestype ShoeSize = Double -- British sizesizes :: Domain ShoeSizesizes = [4, 4.5..13]short, medium, tall, very_tall :: Fuzzy Heightshort = down 1.5 1.625medium = tri 1.525 1.775tall = tri 1.675 1.925very_tall = up 1.825 1.95small, average, big, very_big :: Fuzzy ShoeSizesmall = down 4 6average = tri 5 9big = tri 8 12very_big = up 11 13-- calculate the shoe size from a given heightshoe_size :: Height -> ShoeSizeshoe_size h = centroid sizes (rulebase (+) [short h ==> small,medium h ==> average,tall h ==> big,very_tall h ==> very_big])Consider the use of the rulebase function inside the shoe size function. Its �rstargument is +, i. e., we are using fuzzy subset addition to combine the weightedsubsets. Its second argument is the set of rules, written using the ==> operator.During evaluation of the rulebase function, each of these rules will be evaluated,giving the required weighted set, which will all then be combined, in this case using+. This set is then defuzzi�ed using the centroid function over the domain sizes.4.1 Further Examples4.1.1 Controlling a ShowerConsider the problem of controlling a shower (for Information Technology, 1996).We wish to get the temperature to between 34�C and 38�C and the ow of thewater between 11 l/min and 13 l/min. To do this we have two taps, one hot and

Animated Fuzzy Logic 19
0 20 40 60 80

0

Cold Hot1

0 5 10 15 20 25
0

Weak Strong1

0

1

-0.1-0.2 0.1 0.2

NM NSNB PS PMZ

Tap Change

Flow (l/min)

Temperature (Celsius)

PB

Right

OK

Fig. 10. Fuzzy subsets of temperature, ow and tap changeone cold, which take values between 0 (fully o�) and 1 (fully on). We divide thetemperature into the fuzzy subsets hot, ok and cold; the ow into the fuzzy subsetsweak, right and strong; and the possible tap changes (ranging from �0:2 to 0:2)into seven fuzzy subsets: pb (big positive change), pm (medium positive change), ps(small positive change), z (zero change), ns (small negative change), nm (mediumnegative change) and nb (big negative change). These fuzzy subsets can be seen inFigure 10.Unlike our shoe size example, the shower is not meant to be a one-use functionbut rather to be continually iterated until the temperature and the ow are in thecorrect range. So we are continually making changes (with suitable gaps in betweenthese changes to let the shower settle into its new settings) until the water becomesacceptable. We have the following system (note that these are not the original setsused in the Fuzzy CLIPS example, which used curved rather than polygonal fuzzysets, and hence we have tweaked the numbers to get a better performance):module Shower whereimport Prelude hiding ((&&), (||), not, and, or, any, all)import Fuzzytype Temp = Doubletype Flow = Doubletype Change = Double

20 Gary Meehan and Mike Joycold, ok, hot :: Fuzzy Tempcold = down 15 36ok = tri 32 40hot = up 36 75weak, right, strong :: Fuzzy Flowweak = down 0 12right = tri 9 15strong = up 12 25nb, nm, ns, z, ps, pm, pb :: Fuzzy Changenb = down (-0.2) (-0.05)nm = tri (-0.1) (-0.025)ns = tri (-0.05) 0.0z = tri (-0.025) 0.025ps = tri 0.0 0.05pm = tri 0.025 0.1pb = up 0.05 0.2change_valves :: (Temp, Flow) -> (Change, Change)change_valves (temp, flow) = (defuz hv, defuz cv)wheredefuz = centroid [-0.2, -0.195..0.2](hv, cv) = rulebase (+) [cold temp && weak flow ==> (pm, z),cold temp && right flow ==> (pm, z),cold temp && strong flow ==> (z, nb),ok temp && weak flow ==> (ps, ps),ok temp && strong flow ==> (ns, ns),hot temp && weak flow ==> (z, pb),hot temp && right flow ==> (nm, z),hot temp && strong flow ==> (nb, z)]4.1.2 Pricing GoodsThe fact that fuzzy logic is inherently contradictory, that is we have truth valueswhich are non-zero and whose negation is also non-zero, is useful in decision makingprocesses where the decisions we have to make are based on conicting demands orrequirements. Fuzzy logic can be used to resolve these contradictions in a natural,simple and e�cient way.Consider the problem of pricing goods (Cox, 1994). The price should be as highas possible to maximise takings but as low as possible to maximise sales. We alsowant to make a healthy pro�t, say a 100% mark-up on the cost price. Then we haveto consider what the competition is charging. We can formalise these requirementsas rules:

Animated Fuzzy Logic 211. Our price must be high.2. Our price must be low.3. Our price must be around 2 � manufacturing costs (i. e., a 100% mark-up).4. If the competition price is not very high then our price must be around thecompetition price (we don't want to indulge in a price war).A boolean system may have di�culties trying to resolve the requirements that theprice must be high and low, not to mention the other two requirements, but a fuzzysystem has no such di�culties.Suppose possible prices are in the range $15 to $35. We de�ne fuzzy subsetshigh and low on this range, viz :type Price = Double -- Pounds Sterlingprices :: Domain Priceprices = [15.00, 15.50 .. 35.00]high, low :: Fuzzy Pricehigh = up 15.00 35.00low = not highSo if we want a price that is high and low (Rules 1 and 2) then we can calculatethis by taking the intersection of high and low and defuzzifying the resultant setto get a typical value, viz :our_price = centroid prices (high && low)Evaluating our price we get:Prices> our_price25.0Rule 3 suggests that we can approximate the price by a fuzzy number centred on 2�manufacturing costs. Taking the manufacturing costs as a parameter to our priceand combining this with what we have so far, we de�neour_price' man_costs =centroid prices (high && low &&around (2.0 * man_costs) prices)Assuming manufacturing costs of $13.25, say, we have:Prices> our_price' 13.2526.252Rule 4 is a conditional rule. The more that the competition price is not very high,the more it a�ects the calculation of our price. Using the ==> operator and takingthe competition price as another parameter, we get:

22 Gary Meehan and Mike Joyour_price'' man_costs comp_price =centroid prices (high && low &&around (2.0 * man_costs) prices &&((not.very high) comp_price ==>around comp_price prices))Assuming the same manufacturing costs as before and a competition price of $29.99we have:Prices> our_price'' 13.25 29.9928.5893So our �nal retail price is $28.59.5 ConclusionWe have introduced and explored the use of fuzzy logic in functional programming.The natural equivalence between fuzzy subsets and their membership functionsmotivates our idea to use a single function to model them both. We have shownhow a functional language can be extended so that it provides facilities for theuse of fuzzy logic and fuzzy subsets, achieved by overloading pre-existing operatorsand functions, and introducing new ones. We have also shown how fuzzy systems,used in a variety of control and decision making problems, can be implemented ina functional language in a natural and e�cient way.ReferencesAptronix Ltd. (1992a). Focusing system. http://www.aptronix.com/fuzzynet/applnote/focusing.htm.Aptronix Ltd. (1992b). Washing machine. http://www.aptronix.com/fuzzynet/applnote/wash.htm.Aptronix Ltd. (1996). Fuzzy java. http://www.aptronix.com/fuzzynet/applnote/java.htm.Cox, Earl. (1994). The fuzzy systems handbook. AP Professional.Eklund, Patrik, & Kwalonn, Frank. (1992). Neural fuzzy logic programming. Ieee Trans-actions on Neural Networks, 3(5), 815{818.Fodor, J�anos, & Roubens, Marc. (1994). Fuzzy preference modelling and multicriteriadecision support. Kluwer Academic Press.for Information Technology, NRC-CNC Institute. (1996). Fuzzy CLIPS. WWW: http://ai.iit.nrc.ca/ fuzzy/ fuzzy.html.Hall, Cordelia, Hammond, Kevin, Peyton Jones, Simon, & Wadler, Philip. (1996). Typeclasses in Haskell. Acm Transactions on Programming Languages and Systems, 18(2),109{138.Horvath, J.M. (1988). A fuzzy set model of learning disability. Pages 345{382 of: Z�et�enyi,Tam�as (ed), Fuzzy sets in pyschology. Advances in Pyschology, no. 56. North-Holland.Jones, Mark. (1995). A system of constructor classes: overloading and implicit higher-orderpolymorphism. Journal of Functional Programming, 5(1).Kaufmann, Arnold. (1975). Introduction to the theory of fuzzy subsets. Vol. 1. AcademicPress.

Animated Fuzzy Logic 23Kosko, Bart. (1994). Fuzzy thinking. Flamingo.Ltd., Logic Programming Associates. (1997). FLINT toolkit. WWW: http://www.lpa.co.uk/ n.html. Lukasiewicz, Jan. (1967a). On the notion of possibility/On three-valued logic. Pages 15{18 of: McCall, Storrs (ed), Polish logic 1920{1939. Oxford University Press. Appearedoriginally under the titles `O poj�eciu mo_zliwo�sci' and `O logice trojwartosciowej' in RuchFilozo�czny 5 (1920), pp 169{171. Lukasiewicz, Jan. (1967b). Philosophical remarks on many-valued systems of propositionallogic. Pages 40{65 of: McCall, Storrs (ed), Polish logic 1920{1939. Oxford UniversityPress. Appeared originally under the title `Philosophische Bemerkungen zu mehrwer-tigen Systemen des Aussagenkalk�uls' in Comptes rendus des s�eances de la Societ�e desSciences et des Lettres de Varsovie, Cl. iii, 23 (1930), pp 51{77.Mamdani, E.H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzylogic controller. International Journal of Man-Machine Studies, 1{13.Martin, T.P., Balwdin, J.F., & Pilsworth, B.W. (1987). The implementation of FProlog| a fuzzy Prolog interpreter. Fuzzy Sets and Systems, 23, 119{129.Negoita, C.V. (1985). Expert systems and fuzzy systems. The Benjamin/Cummings Pub-lishing Company.Peterson, John, & Hammond, Kevin (editors). 1997 (April). The Haskell 1.4 report.http://haskell.org/report/.Peyton Jones, Simon, Jones, Mark P., & Meijer, Erik. (1997). Type classes: exploring thedesign space. Proceedings of the Haskell Workshop, Amsterdam, June 6.Ross, Timothy J. (1995). Fuzzy logic with engineering applications. McGraw-Hill.Russel, Stuart, & Norvig, Peter. (1995). Arti�cial Intelligence | a modern approach.Prentice Hall.Tanaka, Kazuo. (1997). An introduction to fuzzy logic for practical applications. Springer-Verlag. First published in Japanese, 1991.Thompson, Simon. (1996). Haskell: The craft of functional programming. Addison-Wesley.Wang, Li-Win. (1994). Adaptive fuzzy systems and control | design and stability analysis.Prentice Hall.Yan, Jun, Ryan, Michael, & Power, James. (1994). Using fuzzy logic. Prentice Hall.Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338{353.Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems anddecision processes. Ieee Transactions on Systems, Men and Cybernetics, 3, 28{44.Zimmermann, H.-J. (1991). Fuzzy set theory | and its applications. Kluwer AcademicPublishers.

